
The Design and Implementation of the SELF Compiler,
an Optimizing Compiler for

Object-Oriented Programming Languages

A Dissertation

Submitted to the Department of Computer Science

and the Committee on Graduate Studies

of Stanford University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Craig Chambers

March 13, 1992



ii

© Copyright by Craig Chambers 1992

All Rights Reserved



iii

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor

of Philosophy.

David Ungar (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor

of Philosophy.

John Hennessy

I certify that I have read this dissertation and that in my opinion it is fully

adequate, in scope and quality, as a dissertation for the degree of Doctor

of Philosophy.

Mark Linton

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies



iv

Abstract

Object-oriented programming languages promise to improve programmer productivity by supporting abstract data

types, inheritance, and message passing directly within the language. Unfortunately, traditional implementations of

object-oriented language features, particularly message passing, have been much slower than traditional

implementations of their non-object-oriented counterparts: the fastest existing implementation of Smalltalk-80 runs at

only a tenth the speed of an optimizing C implementation. The dearth of suitable implementation technology has forced

most object-oriented languages to be designed as hybrids with traditional non-object-oriented languages, complicating

the languages and making programs harder to extend and reuse.

This dissertation describes a collection of implementation techniques that can improve the run-time performance of

object-oriented languages, in hopes of reducing the need for hybrid languages and encouraging wider spread of purely

object-oriented languages. The purpose of the new techniques is to identify those messages whose receiver can only

be of a single representation and eliminate the overhead of message passing by replacing the message with a normal

direct procedure call; these direct procedure calls are then amenable to traditional inline-expansion. The techniques

include a type analysis component that analyzes the procedures being compiled and extracts representation-level type

information about the receivers of messages. To enable more messages to be optimized away, the techniques include

a number of transformations which can increase the number of messages with a single receiver type. Customization

transforms a single source method into several compiled versions, each version specific to a particular inheriting

receiver type; customization allows all messages to self to be inlined away (or at least replaced with direct procedure

calls). To avoid generating too much compiled code, the compiler is invoked at run-time, generating customized

versions only for those method/receiver type pairs used by a particular program. Splitting transforms a single path

through a source method into multiple separate fragments of compiled code, each fragment specific to a particular

combination of run-time types. Messages to expressions of these discriminated types can then be optimized away in

the split versions. The techniques are designed to coexist with other requirements of the language and programming

environment, such as generic arithmetic, user-defined control structures, robust error-checking language primitives,

source-level debugging, and automatic recompilation of out-of-date methods after a programming change.

These techniques have been implemented as part of the compiler for the SELF language, a purely object-oriented

language designed as a refinement of Smalltalk-80. If only pre-existing implementation technology were used for

SELF, programs in SELF would run one to two orders of magnitude slower than their counterparts written in a

traditional non-object-oriented language. However, by applying the techniques described in this dissertation, the

performance of the SELF system is five times better than the fastest Smalltalk-80 system, better than that of an

optimizing Scheme implementation, and close to half that of an optimizing C implementation.

These techniques could be applied to other object-oriented languages to boost their performance or enable a more

object-oriented programming style. They also are applicable to non-object-oriented languages incorporating generic

arithmetic or other generic operations, including Lisp, Icon, and APL. Finally, they might be applicable to languages

that include multiple representations or states of a single program structure, such as logic variables in Prolog and

futures in Multilisp.



v

Acknowledgments

My heartfelt appreciation and thanks go to my advisor, David Ungar, for providing me with the great opportunity to

participate in the SELF project. David always treated me as a colleague, promoted my work to others, and did his best

to prepare me for independent research. He taught me much about research, writing, speaking, advising, and

cartooning. I could never have had such an enjoyable and educational graduate experience without him. I will strive

to be as good to my students as he was to me.

Besides serving on my thesis reading committee and providing much important feedback, Mark Linton also provided

advice and direction during my first year at Stanford. His weekly research group meetings throughout my years at

Stanford were interesting and educational. I appreciate Mark’s strong support of my work. John Hennessy also served

on my reading committee; his perceptive comments on my dissertation significantly improved its presentation, and in

the process taught me a great deal about good research.

I also thank the other members of the SELF team for stimulating discussions and fun outings. Thanks to Elgin Lee for

sharing an office and the birth of the SELF system with me. Bay-Wei Chang and Urs Hölzle worked and played with

me as the SELF project matured. These patient people put up with my not-so-occasional coffee-induced tirades and

continued to listen and discuss after the caffeine wore off. I will always remember fondly the times we’ve shared. More

recently, Randy Smith, Ole Agesen, John Maloney, and Lars Bak have kept the SELF group a fun and stimulating

collection of people.

Others at Stanford provided moral support and social diversions that helped me through. Ross Finlayson, Steve “Brat”

Goldberg, Paul Calder, and John Vlissides were particularly good friends. My brother-in-common-law, Martin Rinard,

made my time at Stanford interesting, to say the least.

I appreciate the support and patience of my new colleagues at the University of Washington as I finished this

dissertation concurrently with my other responsibilities. By helping to make my transition from student to professor

so smooth, they enabled me to finish this tome relatively quickly and painlessly. I also owe much to my early training

as an undergraduate at MIT in Barbara Liskov’s research group. Mark Day, Bob Scheifler, Paul Johnson, and Bill

Weihl, my undergraduate thesis advisor, taught me about research and real system-building, and this experience

enabled me to get started on research at Stanford right away.

Finally, I thank my family for their continued support and encouragement. I thank Bill McLaughlin, one of my real

brothers-in-law, for his help in putting together the final version of this thesis and taking care of the last administrative

details. To my wife, Sylvia, I owe my sincerest gratitude and give my deepest love.

This research has been generously supported by the National Science Foundation, Sun Microsystems, IBM, Apple

Computer, Cray Laboratories, Tandem Computers, NCR, Texas Instruments, and Digital Equipment Corporation.



vi


